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Abstract

The design of thin-walled beam-columns must take into account the overall instability and the instability of
component plates in the form of local buckling. This investigation is concerned with interactive buckling of thin-
walled beam-columns with central intermediate sti�eners or/and variable thickness under axial compression and a
constant bending moment. The columns are assumed to be simply supported at the ends. The asymptotic expansion

established by Byskov and Hutchinson (1977: Byskov, E. and Hutchinson, J. W. (1977). Mode interaction in axially
sti�ened cylindrical shells. AIAA J., 15(7), 941±948) is employed in the numerical calculations performed using the
transition matrix method. The present paper is a continuation of the papers by Kolakowski and Teter (1995a,b:

Kolakowski, Z. and Teter, A. (1995a). Interactive buckling of thin-walled closed elastic column-beams with
intermediate sti�eners. Int. J. Solids Structures, 32(11), 1501±1516; Kolakowski, Z. and Teter, A. (1995b). In¯uence
of local post-buckling behaviour on bending of thin-walled elastic beams with central intermediate sti�eners.

Engineering Transactions, 43(3), 383±396) and Teter and Kolakowski (1996: Teter, A. and Kolakowski, Z. (1996).
Interactive buckling of thin-walled open elastic beam-columns with intermediate sti�eners. Int. J. Solids Structures,
33(3), 315±330) where the interactive buckling of thin-walled beam-columns with central intermediate sti�eners in
the ®rst order approximation was considered. The paper's aim is to improve the study of the equilibrium path in the

post-buckling behaviour of imperfect structures with regard to the second order non-linear approximation. In the
solution obtained the transformation of buckling modes with an increase of the load up to the ultimate load, the
e�ect of cross-sectional distortions and shear lag phenomenon is included. The calculations are carried out for a few

beam-columns. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thin-walled structures consisting of plate elements and having a number of buckling modes di�er
from one another both in quantitative (e.g. by the number of half-waves) and in qualitative (e.g. by
global and local buckling) respects.

Nomenclature

ajkr, brrrr three- and four-index coe�cients in the non-linear
equilibrium Eq. (11) (Byskov and Hutchinson, 1977)

�a
� j �
i , �b

� j �
i , �c

� j �
i , �d

� j �
i , �e

� j �
i , �f

� j �
i , �g

� j �
i , �h

� j �
i orthogonal functions for the ®rst order approximation

(Eq. (6))
â
� jj �
i , b̂

� jj �
i , ĉ

� jj �
i , d̂

� jj �
i , ê

� jj �
i , f̂

� jj �
i , ĝ

� jj �
i , ĥ

� jj �
i orthogonal functions for the second order approximation

(Eq. (8))
bi width of the i-th wall of the column
hi thickness of the i-th wall of the column
j number of the mode
J number of the interacting mode
l length of the column
m number of axial half-waves of the mode
Mix, Miy, Mixy bending moment resultants for the

i-th wall
N
-

force ®eld
Nix, Niy, Nixy in-plane resultants for the i-th wall
N (0)

ix pre-buckling in-plane stress for the i-th wall
U
-

displacement ®eld
ui, vi, wi displacement components of the middle surface of the i-th

wall
Di measure of the applied pressure
Eix, Eiy, Eixy strain tensor components for the middle surface of the i-

th wall
kix, kiy, kixy curvature modi®cations and torsions of the middle

surface of the i-th wall
l scalar load parameter
lj value of at the bifurcation mode number j
ls maximum value of l for the imperfect column
s �j=sj10

3/E dimensionless stress of the j-th mode
s �m min(s �1, s

�
2, s

�
3, . . . s �J)

s �s limit dimensionless stress for imperfect column (load
carrying capacity)

zj amplitude buckling mode number j
�zj imperfection amplitude corresponding to zj
xi xi/bi nondimensional coordinate
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Local buckling is the major feature to be taken into account in the design of thin-walled
sections. Thin-walled structures, especially columns and beams, may have many buckling modes
and are able to sustain load after local buckling. The local buckles cause reduction in the sti�ness
of a section and, consequently, lower the load carrying capacity relative to a non-locally buckled
section. The determination of their load carrying capacity requires consideration of the modal
interaction of buckling modes and imperfections in the non-linear analysis of stability. The
problem of the interaction of the global mode with the local ones is of great signi®cance.

Intermediate sti�eners are widely used in many types of metal structures. These sti�eners carry a
portion of loads and subdivide the plate element into smaller sub-elements, thus increasing considerably
the load-carrying capacity. The shape, size and position of intermediate sti�eners in thin-walled
structures exert a strong in¯uence on the stability and postbuckling behaviour of the thin-walled
structures. The importance of the minimum rigidity of the intermediate sti�eners required to restrict
buckling to the plate elements was studied e.g. by Timoshenko (1921), Cox and Riddell (1949),
Desmond (1977), HoÈ glund (1978), Konig (1978).

The test specimens, experimental works and comparisons made with design rules of plates and
open cross-section structures were detailed by Hoon et al. (1993), Bernard et al. (1993).
Mathematical models tend to higher precision and closer approximation of real structures, which
enables one to analyse more and more exactly the phenomena occurring during and after the loss
of stability.

The concept of interactive buckling involves the general asymptotic non-linear theory of stability. The
theory is based on asymptotic expansions of the post-buckling path and is capable of considering
simultaneous or nearly simultaneous buckling modes (Byskov and Hutchinson, 1977).

As far as the ®rst order approximation in concerned, Koiter and van der Neut (1980) have proposed
a technique in which the interaction of an overall mode with two local modes having the same
wavelength (i.e. three-mode approach) has been considered. The fundamental local mode is henceforth
called `primary' and the nontrivial higher mode (having the same wavelength as the `primary' one),
corresponding to the mode triggered by the overall long wave mode, is called `secondary'. In the energy
expression for the ®rst order non-linear approximation the coe�cients of the cubic terms z1z

2
2, z1z

2
3 and

z1z2z3 (where zj is the amplitude of j-th buckling mode and the index is: 1 for the global mode, 2 for the
primary local buckling mode and 3 for the secondary local mode) are the key terms governing the
interaction.

Consideration of displacements and load components in the middle surface of walls within the ®rst
order approximation as well as precise geometrical relationships enabled the analysis of all possible
buckling modes including a mixed buckling mode (for a more detailed analysis see papers by Camotim
and Prola, 1996; Dubina, 1996; Teter and Kolakowski, 1996; Kolakowski et al., 1997). In thin-walled
structures of open cross-sections, owning to their low rigidity, it is necessary to consider distortional
deformations. The above factors have even led to consideration of an interaction of a few modesÐtwo
global and some local ones.

If the analysis of the stability problem of thin-walled structures is restricted to the ®rst order
approximation, the imperfection sensitivity can only be obtained. The determination of the post-
buckling equilibrium path requires the second order approximation to be taken into account. The
structures where the local buckling precedes the global one (l2 > l1 i.e. s �2 > s �1) are widely used
because these structures can carry a load higher than that referring to the bifurcation value of the local
buckling.

Therefore, it is necessary to consider the second order approximation, that is the fourth order
components of the potential energy (coe�cients of the terms z 2j z

2
k). In general, the stability analysis with

regard to the second non-linear approximation requires the solution of boundary value problems: for
the second order global, local and mixed modes. However, in the case when l2 > l1 the most signi®cant
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are local second order modes. The second order global mode for a beam-bar model of the column is
zero and in the case of an exact solution it is of little importance in more instances.

In the case of the mixed ®eld of the second order, the left-hand side of the equilibrium equation is the
same as in the ®rst order approximation (in eigenvalues problem) and the load parameter l is very often
assumed to be l=min(l1, l2, . . . lJ). The right-hand side of the equilibrium equation can be treated as
a loading term proportional to the displacements corresponding to the global buckling mode (m=1), to
the displacements referring to the local buckling modes (m>>1) and to the factors standing by the
arguments (m ÿ 1) or (m+ 1) of respective trigonometric functions (Sridharan and Ali, 1986; Sridharan
and Peng, 1989; Kasagi and Sridharan, 1995). On the other hand, consideration of the second-order
approximation makes sense only when l2 > l1. In view of this and in the case of l2> lr (rr3, . . . J ) it
is practically assumed that l=l2. The eigenvalues of the mixed second-order ®eld for global and local
modes are nearly the same as the eigenvalue of the local buckling mode, m>>1. Therefore, both
eigenvalue problems are almost identical. The system of equilibrium equations for second-order mixed
modes with non-zero right-hand members is wrongly conditioned from the numerical point of view,
since a characteristic determinant for such a system is nearly zero.

On the other hand, an omission of the second order mixed mode is possible owing to the fact that
three-mode approach has been already included in the analysis. The admissibility of neglecting the
mixed mode was shown by Koiter (1976), Sridharan and Peng (1989).

The equations for local modes in the second approximation depend not only on the respective ®rst
order local modes, but, regarding the orthogonality conditions, also on the considered ®rst order modes.
Therefore, none of the local second order modes obtained with allowance for interactive buckling is
identical with the mode obtained according to the theory of single-mode buckling (an uncoupled
buckling), where the condition of orthogonality in relation to the global mode is not binding.

A more comprehensive review of the literature concerning the interactive buckling analysis of an
isotropic structure can be found in papers by Koiter and Pignataro (1976), Manevich (1985, 1988),
Moellmann and Goltermann (1989), Pignataro et al. (1985, 1987a,b), Sridharan and Ali (1985, 1986),
Krolak (1990), Kolakowski (1987a, 1989a±c, 1993a,b).

In the present paper which is a continuation of the papers devoted to the ®rst order approximation
written by Kolakowski and Teter (1995a) and Teter and Kolakowski (1996), an analysis of the load
carrying capacity of beam-columns in the second non-linear approximation considering only local
second order modes is undertaken. Thin-walled structures with the intermediate sti�eners or/and
variable thickness in the elastic range being under axial compression and a bending moment are
examined on the basis of Byskov and Hutchinson's method and the co-operation between all the walls
of structures being taken into account is shown. The study is based on the numerical method of the
transition matrix (Unger, 1969; Bilstein, 1974) using Godunov's orthogonalization (Biderman, 1977).
The most important advantage of this method is that it enables us to describe a complete range of
behaviour of the thin-walled structures from all global (¯exural, ¯exural±torsional, lateral, distortional
and their combinations) to local stability. In the solution obtained, the e�ects of interaction of certain
modes having the same wavelength, the transformation of buckling modes with the increase of load, the
shear lag phenomenon and also the e�ect of cross-sectional distortions are included. The distortion
instability of beam-columns is investigated using non-linear theory.

2. Structural problem

The long thin-walled prismatic beam-columns of length l, composed of plane, rectangular plate
segments interconnected along longitudinal edges, simply supported at both ends, are considered. The

Z. Kolakowski, A. Teter / International Journal of Solids and Structures 37 (2000) 3323±33443326



cross-section of this structure composed of several plates, as well as the local Cartesian co-ordinate
systems, are presented in Fig. 1.

A plate model is adopted for the beam-columns. For the i-th plate component precise geometrical
relationships are assumed in order to enable the consideration of both out-of-plane and in-plane
bending of each plate:

Eix � ui, x � 1

2
�w2

i, x � v2i, x�,

Eiy � vi, y � 1

2
�w2

i, y � u2i, y�,

2Eixy � gixy � ui, y � vi, x � wi, xwi, y,

kix � ÿwi, xx, kiy � ÿwi, yy, kixy � ÿwi, xy: �1�
The di�erential equilibrium equations resulting from the virtual work principle and corresponding to
expressions (1) for the i-th plate can be written as follows:

Nix, x �Nixy, y � �Niyui, y�, y � 0,

Nixy, x �Niy, y � �Nixvi, x�, x � 0,

Fig. 1. Prismatic plate structure and the local co-ordinate system.
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�Nixwi, x�, x � �Niywi, y�, y � �Nixywi, x�, y � �Nixywi, y�, x �Mix, xx �Miy, yy � 2Mixy, xy � 0: �2�

The non-linear problem is solved by Byskov and Hutchinson asymptotic method (1977). The
displacement ®elds U

-
, and the sectional force ®elds, N

-
, are expanded in power series in the buckling

mode amplitudes, zj (zj is the amplitude of the j-th buckling mode divided by thickness of the ®rst
component plate, h1):

ÅU � l �U
�0�
i � zj �U

� j �
i � zjzk �U

� jk�
i � � � �

ÅN � l �N
�0�
i � zj �N

� j �
i � zjzk �N

� jk�
i � � � � �3�

where the pre-buckling ®elds are U
- (0)
i , N

- (0)
i , the buckling mode ®elds are U

- (j )
i , N

- ( j )
i and the post-

buckling ®elds U
- (jk )
i , N

- ( jk )
i . The range of indices is [1, J ] where J is the number of interacting modes.

By substituting expansion (3) into equations of equilibrium (2), junction conditions (12) and boundary
conditions (14), the boundary value problems of zero, ®rst and second order can be obtained. The zero
approximation describes the pre-buckling state while the ®rst approximation, that is the linear problem
of stability, enables us to determine the critical loads of global and local value and their buckling
modes. This question can be reduced to a homogeneous system of di�erential equilibrium equations.
The second order boundary problem can be reduced to a linear system of non-homogeneous equations,
whose right-hand sides depend on the ®rst order displacement and force ®elds.

3. Solution of the problem

The plates with linearly varying pre-buckling stresses along their widths are divided into several strips
under uniformly distributed compressive (tensile) stresses (Fig. 2). Instead of the ®nite strip method, the
exact transition matrix method is used in this case.

The pre-buckling solution of the i-th plate consisting of homogeneous ®elds is assumed to be:

u
�0�
i �

�
l

2
ÿ xi

�
Di,

Fig. 2. Discretization of a linear distribution of stresses by means of ®nite strips.
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v
�0�
i � niyiDi,

w
�0�
i � 0, �4�

so:

N
�0�
ix � ÿEihiDi N

�0�
iy � N

�0�
ixy � 0 �5�

where Di is the actual loading. This loading is speci®ed as the product of a unit loading system and a
scalar load factor Di.

The omission of the displacements of the fundamental state implies that we ignore the di�erence
between con®guration of the undeformed state and the fundamental state and we may consequently
regard the previously de®ned displacements u (0)

i , v (0)i as the additional ones from the fundamental state
to the adjacent state.

Numerical aspects of the problem being solved for the ®rst order ®elds (Kolakowski and Teter,
1995a), resulted in an introduction of the following new orthogonal functions in the sense of boundary
conditions for two longitudinal edges (see Appendix B):

�a
� j �
i � v

� j �
i, w � niu� j �i, x,

�b
� j �
i � 0:5�1ÿ ni ��u� j �i, w � v

� j �
i, x�,

�c
� j �
i � u

� j �
i ,

�d
� j �
i � v

� j �
i ,

�e
� j �
i � w

� j �
i ,

�f � j �i � w
� j �
i, w,

�g
� j �
i � w

� j �
i, ww � niw� j �i, xx,

�h
� j �
i � w

� j �
i, www � �2ÿ ni �w� j �i, xxw: �6�

The boundary conditions (14) permit the ®rst order solution to be written as:

�a
� j �
i � �A

� j �
i �wi � sin

mpbi
l

xi,

�b
� j �
i � �B

� j �
i �wi � cos

mpbi
l

xi,

�c
� j �
i � �C

� j �
i �wi � cos

mpbi
l

xi,
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�d
� j �
i � �D

� j �
i �wi � sin

mpbi
l

xi,

�e
� j �
i � �E

� j �
i �wi � sin

mpbi
l

xi,

�f
� j �
i � �F

� j �
i �wi � sin

mpbi
l

xi,

�g
� j �
i � �G

� j �
i �wi � sin

mpbi
l

xi,

�h
� j �
i � �H

� j �
i �wi � sin

mpbi
l

xi, �7�

where �A
� j �
i , �B

� j �
i , �C

� j �
i , �D

� j �
i , �E

� j �
i , �F

� j �
i , �G

� j �
i , �H

� j �
i (with the m-th harmonic) are initially unknown

functions de®ned by the modi®ed numerical transition matrix method. The system of the ordinary
di�erential equilibrium Eqs. (2) for the ®rst order approximation is solved by the modi®ed
transition matrix method in which the state vector of the ®nal edge is derived from the state vector
of the initial edge by numerical integration of the di�erential equations in the wi � yi=bi-direction
using the Runge±Kutta formulae by means of the Godunov orthogonalization method (Biderman,
1977).

The global buckling mode occurs at m=1 and the local modes at m>>1 (with bi<<l ).
Analogously to the introduction of the orthogonal functions (6), the adopted boundary conditions

(14) require an introduction of new functions for the second order ®elds:

â
� jj �
i � v

� jj �
i, w � niu� jj �i, x ,

b̂
� jj �
i � 0:5�1ÿ ni ��u� jj �i, w � v

� jj �
i, x �,

ĉ
� jj �
i � u

� jj �
i ,

d̂
� jj �
i � v

� jj �
i ,

ê
� jj �
i � w

� jj �
i ,

f̂
� jj �
i � w

� jj �
i, w ,

ĝ
� jj �
i � w

� jj �
i, ww � niw� jj �i, xx,

ĥ
� jj �
i � w

� jj �
i, www � �2ÿ ni �w� jj �i, xxw: �8�

The main di�erence in the presented method of solution consists in an introduction of the orthogonal
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force and displacement functions in the ®rst and second order approximation in contradistinction to
paper by Kolakowski (1993a,b) where only new non-orthogonal functions were introduced for the
second order solution.

The easiness of satisfying the orthogonality conditions allows the second order ®elds to be formulated
as follows:

â
� jj �
i �

X
n

Â
� jj �
in �wi � sin

npbi
l

xi � A
�� jj �
i ,

b̂
� jj �
i �

X
n

B̂
� jj �
in �wi � cos

npbi
l

xi,

ĉ
� jj �
i �

X
n

Ĉ
� jj �
in �wi � cos

npbi
l

xi � C
�� jj �
i

�
l

2
ÿ bixi

�
,

d̂
� jj �
i �

X
n

D̂
� jj �
in �wi � sin

npbi
l

xi,

ê
� jj �
i �

X
n

Ê
� jj �
in �wi � sin

npbi
l

xi,

f̂
� jj �
i �

X
n

F̂
� jj �
in �wi � sin

npbi
l

xi,

ĝ
� jj �
i �

X
n

Ĝ
� jj �
in �wi � sin

npbi
l

xi,

ĥ
� jj �
i �

X
n

Ĥ
� jj �
in �wi � sin

npbi
l

xi, �9�

where

A
�� jj �
i � ÿnibiC

�� jj �
i

C
�� jj �
i �

�1
0

(�
mpbi
l

�2

� �D
� j �2
i � �E

� j �2
i � �

2

1ÿ ni

�
B
� j �
i ÿ

�
mpbi
l

�
�D
� j �
i

�2)
dwi

2b2i

�1
0

dwi

: �10�

Â
� jj �
in , B̂

� jj �
in , Ĉ

� jj �
in , D̂

� jj �
in , Ê

� jj �
in , F̂

� jj �
in , Ĝ

� jj �
in , Ĥ

� jj �
in are unknown functions that shall be determined by the

method of transition matrix in the same way as the ®rst order ®elds.
The coe�cients C

�� jj �
i and A

�� jj �
i have been found from condition (14) and from Eqs. (8), respectively.

Owing to the correction factors A
�� jj �
i , C

�� jj �
i introduced into (9), the additional longitudinal

Z. Kolakowski, A. Teter / International Journal of Solids and Structures 37 (2000) 3323±3344 3331



compression caused by the in¯uence of the ®rst order displacement ®eld upon the second order
approximation can be reduced to zero at both ends. The above factors allow to satisfy identical
boundary conditions (14) both for the ®rst and the second order approximation.

The Poisson's e�ect is, like in the case of the ®rst approximation, neglected at both ends and is taken
into account inside the plate areas.

Taking into account the components of membrane forces and displacements within the ®rst order
approximation allows to consider shear-lag phenomenon and the distortions of cross-sections, whereas
the assumption of a non-zero de¯ection within the second order approximation accounts for the
transformation of displacement and force ®elds with the increase of loading that is disregarded in most
works.

At the point where the load parameter l reaches its maximum value ls for the imperfect structure
(secondary bifurcation or limit points), the Jacobian of the non-linear system of equations (Byskov and
Hutchinson, 1977):�

1ÿ l
lr

�
zr � ajkrzjzk � brrrrz

3
r � � � � �

l
lr

�zr at r � 1, 2, . . . J �11�

is equal to zero.
Expressions for ajkr, brrrr are calculated by known formulae (Byskov and Hutchinson, 1977). The

formulae for the postbuckling coe�cients ajkr depend only on the buckling modes, whereas the
coe�cients brrrr also depend on the second order ®eld.

The result of integration along xi � xibi indicates that the post-buckling coe�cients ajkr are zero when
the sum of the wave numbers associated with the three modes �mj �mk �mr� is even, while the
coe�cients brrrr are non-zero.

Considering only linear initial imperfections (determined by the shape of J coupled buckling modes)
and components of displacement and force ®elds for the ®rst order allows us, to some extent, to
account for the residual stresses. However the residual stresses are not assumed in advance and this
approach can only be treated as an attempt to consider their most unfavourable distribution. For a
rather extensive discussion see papers by Pignataro and Luongo (1987a,b).

4. Analysis of results

The numerical analysis concerning the second order local ®elds in thin-walled structures depends on
the coe�cients determining the nature of the post-buckling behaviour as functions of structural
parameters and the in¯uence of these coe�cients upon equilibrium branches and the load carrying
capacity. The accuracy of trigonometric series convergence was found su�cient for practical purposes
with up to 50 non-zero harmonics considered (n= 1, 3, 5, . . . , 99). This ensured obtaining the accuracy
of displacement and stress ®elds below 0.1%.

In all analysed cases the post-buckling coe�cients brrrr are positive.
With regard to `exact' continuity conditions at longitudinal sides of the structure for ji,i + 1$ 0 as

early as in the ®rst order approximation, non-zero displacement components appear. If the simpli®ed
boundary conditions are adopted for longitudinal sides, the above component is very often omitted.

The character of the second order ®eld determining the post-buckling behaviour for uncoupled local
buckling modes varies, subject to the mode of the ®rst order buckling in question. The second order
stresses are the sums of two components s ( jj )=s ( jj )

1 +s ( jj )
2 , where s ( jj )

1 stands for the stress
corresponding to the ®rst order displacements, s ( jj )

2 represents stresses found on the basis of the second
order displacement ®eld (for a more detailed analysis see papers by Kolakowski, 1993a,b).
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The orthogonality condition of global and local ®rst order modes relative to the local second order
modes implies that in the latter case amplitudes should be changed for n = 1 and n=m if m is an odd
number of half-waves in the longitudinal direction. This results from the adoption of series form (9) for
the second order ®eld and from the fact that odd n values are summed.

The largest contribution to the second order ®elds is made by harmonics for low values of n (n=1, 3,
5) and for n close to 2 m. Hence the amplitude corrections at n = 1 and n = m (where m = 3, 5, 7),
which is characteristic for example, of open-section columns, compressed sti�ened plates, may lead to a
signi®cant change in the value of brrrr (r>1) coe�cients.
The second order ®eld was determined along with the coe�cients brrrr corresponding to the second

order approximation for l=min(l1, l2, . . . lJ).
The long thin-walled prismatic beam-columns of a square cross-section with variable thickness (Fig.

3(a)), with corners bevelled at the angle of 45 (Fig. 3(b) and (c)) reinforced with C-shaped central
intermediate sti�eners (Fig. 3(d)) have been performed. The bevelled corners and intermediate sti�eners
are built of plates whose width is bs. Detailed numerical calculations have been carried out for a few
cross-sectional reinforcements of thin-walled beam-columns subject to uniform and eccentric
compression.

In the pre-buckling state the beam-column is subjected to linearly variable stresses caused by an axial
force and a bending moment which are dealt with as external loads. The load distribution can be
described with the ratio of stress pi( y ) at the point i of the cross-section to the greatest compressive
stress, pmax=p1 applied to the top ¯ange (Fig. 3). In the presented paper the load distribution is de®ned
by the ratio of stresses in the bottom ¯ange (point 2) to maximum stresses in the top ¯ange (point 1),
k=p2/p1=p2/pmax. The stress pi is considered positive if it is a compressive stress. In order to compare
load capacities of di�erent cross-sections (Fig. 3(a)±(d)), identical distributions of external stress are
assumed; this implies a change in the values of a compressive force and a bending moment.

Fig. 3. Types of closed cross-section considered.
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The calculations are carried out for a beam-column of the following geometrical dimensions (Fig.
3(a)±(c)):

b1=b3 � 2:0; b1=b2 � 1:0; h1=h2 � 1:5; l=b2 � 8; b1=h1 � 100; n � 0:3

and for the bevelled corners:

bs=h1 � f0, 9, 18, 27g:
Figs. 4±7 present the dimensionless critical stress s �r , instead of the load parameter lr, as a function of
the number of half-waves, m, for the beam-column subjected to the uniform (k=1) and eccentric (k=0)
compression and for the above values of bs/h1. As a comparison, the results are shown as obtained for a
`smooth' square column with variable thickness (i.e. for bs/h1=0, in Figs. 4(0)±7(0)).

While analysing the values of critical loads, it has been found that in the case of the axial
compression (k = 1) a change in the wall thickness and bevelling two corners only is purposeless (Fig.
3(c)) as the values of critical stresses for local and global buckling modes do not change practically,
independently of the size of bevelling (Fig. 5). In this case, the broadest of the plates creating a column
(i.e. the bottom ¯ange) is subjected to buckling, and other plates follow it. Thus, a modi®cation in the
cross-section by means of bevelling the remaining corners is necessary (Fig. 3(b)) in order to increase
rigidity of the component plates. In this case a desirable increase in the critical stresses corresponding to
the local buckling (Fig. 4) can be observed. In the case of a column with bevelled corners with the
reinforcement bs/h1=27, the lowest critical stresses corresponding to the local buckling increase three
times. An in¯uence of the size of corner bevelling for the assumed type of the cross-section and load
does not cause in practice an increase in global stresses owing to small changes in the moment of inertia
of the cross-section.

A modi®cation of the square cross-section (Fig. 3(a)) accomplished by corner bevelling (Fig. 3(b) and
(c)) results in the expected increase in the local critical stress value owing to the growth of ¯exural
rigidity of the component plates, and in a slight increase in global critical stress value (up to about 10%)
as has been mentioned above.

Fig. 4. Dimensionless stress s �r vs the number of half-waves m for uniform compression column (k=1) with cross-section presented

in Fig. 3(b).
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The assumption of the plate model of a beam-column has allowed for an analysis of the e�ect of the
eccentricity of the applied force on the global stability, which is impossible in the case the beam model
is assumed.

While investigating critical states of beam-columns subjected to the eccentric compression (k=0), it
has been found that a change in the wall thickness and bevelling two corners only (Fig. 3(c)) results in a
desirable increase in the stresses corresponding to the local buckling (Fig. 7). An increase in the
eccentricity of the compressive force is followed by an increase in the stability coe�cient of the webs
and the bottom ¯ange, which in turn, causes the global and the local critical load to increase twice. In
this case, for the reinforcement bs/h1=27, the lowest critical stresses corresponding to the local buckling
increase three times. An application of additional corner bevelling (Fig. 3(b)) is not as much purposeful
in this case, because it does not exert in practice any in¯uence on the value of the global and the local
critical load (cf. Figs. 6 and 7).

Fig. 5. Dimensionless stress s �r vs the number of half-waves m for uniform compression column (k=1) with cross-section presented

in Fig. 3(c).

Fig. 6. Dimensionless stress s �r vs the number of half-waves m for compressed eccentrically column (k=0) with cross-section pre-

sented in Fig. 3(b).
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In order to determine the maximum value of the load (the so-called limit load capacity) of a real
structure, it is necessary to take into account an interaction of di�erent buckling modes. In the analysis
of an interaction of buckling modes of such a structure, one should consider the global buckling mode,
the primary and the secondary local buckling mode. Detailed numerical calculations have been carried
out for the beam-columns analysed (Fig. 3(a)±(c)), characterized by the following imperfection values:
�z1 �j 1:0 j, �z2 �j 0:2 j, �z3 � 0:0 where the index is: 1Ðfor the global mode, 2Ðfor the primary local
buckling mode, and 3Ðfor the secondary local buckling mode, respectively.

An assumption of the global imperfection takes into account the global pre-buckling bending of the
beam-column.

In Tables 1±3 the values of the dimensionless critical stresses s �r , along with the number of half-waves
m (in brackets) and the dimensionless limit load capacity values s �s=ss10

3/E referred to the minimum
value of the critical stresses s �m=min(s �1, s

�
2, s

�
3) for the columns under consideration (Fig. 3(a)±(c)) are

presented.
In each case the signs of the imperfections have been chosen in the most unfavourable fashion, i.e. so

that s �s would assume its minimum value (see Manevich, 1988; Kolakowski, 1987a,b, 1989a, 1989c, for a
more detailed discussion).

The local mode imperfections always promote an interaction between the local modes and the global
mode.

In the cases being analysed, the value of the global Euler critical load exceeds the lowest local critical
load: for the column shown in Fig. 3(a) and (b)Ða few times, and for the column depicted in Fig. 3(a)
and (c)Ðeven more than 10 times. Taking into account the second order approximation causes that the

Fig. 7. Dimensionless stress s �r vs the number of half-waves m for compressed eccentrically column (k=0) with cross-section pre-

sented in Fig. 3(c).

Table 1

Load-carrying capacity s �s /s
�
m for beam-column with cross-section presented in Fig. 3(a) at imperfections �z1 �j 1:0 j, �z2 �j 0:2 j,

�z3 � 0:0

bs/h1 k s �1 s �2 s �3 s �s /s
�
m

1 0 1 7.862(1) 0.4553(9) 0.7561(9) 1.6670

2 0 0 14.290(1) 0.9713(8) 1.9175(8) 1.5073
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theoretical limit load capacity increases one and half times in comparison with the minimum value of
the local load. In the case the analysis limitation to the ®rst order approximation is not su�cient and
can only be treated as the lower bound estimation of the load carrying capacity.

In the case of the eccentric compression the global stress values, s �r , are signi®cantly higher than
under the uniform compression while the limit stress values, s �s /s

�
m are lower (compare cases 1±4, 2±5,

3±6 in Tables 2 and 3, respectively, and cases 1 and 2 in Table 1). This means that the imperfection
sensitivity increases together with the eccentricity of the compressive force.

The calculations have con®rmed that in the case when the value of the global load exceeds the value
of the local load, it is possible to reach the limit load capacity higher than the minimum value of the
local load for a moderately low value of the imperfection.

Taking into account the second order approximation enables us to determine the limit load capacity
of the structure in an elastic range. An assumption of one of the `engineering' hypotheses of the load
carrying capacity allows for determination of the limit load for an elastic±plastic range (see the paper by
Manevich and Kolakowski, 1996; Kolakowski and Teter, 1995b).

The calculations are carried out for a beam-column of a closed cross-section reinforced with C-shaped
central intermediate sti�eners of the following constant geometrical dimensions (Fig. 3(d)):

b1=b2 � 1:0; h1=h2 � 1:0; l=b2 � 20; b1=h1 � 100; n � 0:3:

Central intermediate sti�eners are modelled with plates, their dimensions being:

bs=h1 � f0, 8g:
The cases of the uniformÐk=1 (Fig. 8(a)) and eccentricÐk=0 (Fig. 8(b)) compression are analysed.

The introduction of central intermediate sti�eners increases the ¯exural rigidity of plate elements and,

Table 2

Load-carrying s �s /s
�
m capacity for beam-column with cross-section presented in Fig. 3(b) at imperfections �z1 �j 1:0 j, �z2 �j 0:2 j,

�z3 � 0:0

bs/h1 k s �1 s �2 s �3 s �s /s
�
m

1 27 1 8.5501(1) 1.2890(16) 1.9389(16) 1.5266

2 18 1 8.1226(1) 0.9280(14) 1.3870(14) 1.5255

3 9 1 7.9635(1) 0.6305(10) 0.9170(10) 1.5439

4 27 0 14.9983(1) 2.8545(16) 3.9821(16) 1.5101

5 18 0 14.5932(1) 2.0216(14) 2.8385(14) 1.5284

6 9 0 14.4075(1) 1.2122(8) 2.3792(8) 1.5264

Table 3

Load-carrying capacity s �s /s
�
m for beam-column with cross-section presented in Fig 3(c) at imperfections �z1 �j 1:0 j, �z2 �j 0:2 j,

�z3 � 0:0

bs/h1 k s �1 s �2 s �3 s �s /s
�
m

1 27 1 7.7853(1) 0.4782(10) 1.2204(10) 2.5514

2 18 1 7.8355(1) 0.4735(10) 1.0452(10) 2.2236

3 9 1 7.8724(1) 0.4625(9) 0.8435(9) 1.8346

4 27 0 16.3150(1) 2.7087(13) 3.0560(13) 1.1253

5 18 0 15.2128(1) 2.0219(14) 2.3446(14) 1.3091

6 9 0 14.5589(1) 1.1644(8) 2.1789(8) 1.9109
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consequently, also the local critical stress values. The global critical stress values for the analysed type of
intermediate sti�eners remain virtually unchanged because of small variations in the moment of inertia
of the cross-section.

Columns reinforced with intermediate sti�eners may show two local minima for two di�erent local
buckling modes (Fig. 8(a) and (b)). The ®rst minimum refers to the smaller number of half-waves m (m
= 7) and the second one to the greater number of half-waves (m 1 51) as compared with the column
without reinforcement. In particular cases the values of these minima for local buckling modes can be
almost equal. Each minimum, however, corresponds to a di�erent local buckling mode. Special attention
should be paid to the fact that critical stress values referring to the second minimum are nearly equal
for both local modes. The theory presented here enables to carry out an analysis of all buckling modes
for intermediate sti�eners of di�erent shapes and ¯exural rigidities. This can help in their rational
designing (for more detailed analysis see papers by Kolakowski and Teter, 1995a and Teter and
Kolakowski, 1996).

Regarding the global stability, a less favourable case is bevelled corners which reduce the moment of
inertia of the cross-section to a greater extent than intermediate sti�eners.

Fig. 8. (a) Dimensionless stress s �r vs the number of half-waves m for uniform compression column (k=1) with cross-section pre-

sented in Fig. 3(d). (b) Dimensionless stress s �r vs the number of half-waves m for compressed eccentrically column (k=0) with

cross-section presented in Fig. 3(d).
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Detailed numerical calculations aiming at the determination of the load carrying capacity of these
structures (Fig. 3(d)) with the following imperfections assumed �z1 �j 1:0 j, �zr �j 0:2 j (where r = 2, . . .
J ) are carried out.

Table 4 present the values of the dimensionless critical stresses, s �r , (the corresponding numbers of
half-waves, m are given in parentheses) and the load carrying capacity to the minimum critical stress
ratios, s �s /s

�
m, for some possible combinations of buckling modes.

The lowest values of stresses s �s /s
�
m for both cases of the compression (i.e. case 4 for k=1 and case 9

for k=0) have been found in the 5-mode approach: the global mode, the local antisymmetric mode (m
1 51) corresponding to the second local minimum, the secondary local symmetric mode corresponding
to the latter and two local symmetric modes corresponding to the mode triggered by the global one and
having the number of half-waves of two last modes (m22) (according to what is suggested by Byskov,
1987). The ®ve-mode approach gives the limit stress lower nearly 10% than the three-mode approach.

Results obtained for centre intermediate V-sti�eners are analogous to those for C-sti�eners.
The calculations are carried out for a beam-column of an open cross-section reinforced with V-shaped

intermediate sti�eners of the following geometrical dimensions (Fig. 9):

b1=b2 � 2:0; h1=h2 � 1:0; l=b1 � 8; b1=h1 � 50; n � 0:3

and for the V-sti�eners:

bs=h1 � f0, 4g:
Figs. 10 and 11 present the dimensionless critical stress, s �r , as a function of the number of half-waves m
for k=1 and for k=0, respectively. As a comparison, the results are shown as obtained for a `smooth'
beam-column (that is, bs/h1=0, Figs. 10(0) and 11(0)). For the compressed channel section without an
intermediate sti�ener, the ratio of the ¯exural±torsional±distortional (primary global) stress to the
primary local stress is found here as equal to 2.29 and the ratio of the ¯exural±distortional (secondary
global) stress to the primary local stress is determined as equal to 3.40.

Reinforcing the above compressed channel section with V-shaped intermediate sti�eners causes an
increase in the values of the local critical stresses while the values of the global critical stresses do not
increase signi®cantly (by approx. 10%) (Fig. 10). The introduction of intermediate sti�eners increases
the ¯exural rigidity of plate elements and the local buckling stress. In these cases the webs are the
elements responsible for the local stability loss.

In the case analysed the ¯exural±torsional buckling precedes the purely ¯exural one.

Table 4

Load-carrying capacity s �s /s
�
m for beam-column with cross-section presented in Fig. 3(d) with the imperfections �z1 �j 1:0 j,

�zr �j 0:2 j (where r=2, . . . J )

k s �1 s �2 s �3 s �4 s �5 s �s /s
�
m

1 1 3.5869(1) 1.9345(7) 2.7215(7) 0.9052

2 1 3.5869(1) 2.1105(51) 2.1146(51) 0.6302

3 1 3.5869(1) 1.9345(7) 2.7215(7) 2.0448(5) 2.1460(9) 0.8833

4 1 3.5869(1) 2.1105(51) 2.1146(51) 2.1146(49) 2.1132(53) 0.5576

5 1 3.5869(1) 1.9345(7) 2.7215(7) 2.1146(51) 2.1146(51) 0.6812

6 0 6.8745(1) 2.3417(7) 6.1912(7) 0.8470

7 0 6.8745(1) 2.2779(52) 3.4132(52) 0.9751

8 0 6.8745(1) 2.5417(7) 6.1912(7) 2.7593(5) 2.7202(9) 0.6566

9 0 6.8745(1) 2.2779(52) 3.4132(52) 2.2828(50) 2.2800(54) 0.6293

10 0 6.8745(1) 2.5417(7) 6.1912(7) 2.2779(52) 3.4132(52) 0.9017
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Fig. 11 shows the dependences of the lowest dimensionless critical stresses, s �r , for beam-columns
subjected to the eccentric compression (k=0). In the case of a column without an intermediate sti�ener
(Fig. 9), the ratio of the global (¯exural±torsional±distortional) stress to the local stress is 2.52 while the
ratio of the ¯exural±distortional stress to the local stress is 2.55. In the case of the channel section under
discussion the critical stresses rise signi®cantly because of a considerable increase in the stability factors
of the ¯ange compressed eccentrically which determine the stability loss.

Table 5 presents the number of half-waves, m, the values of the dimensionless critical stresses, s �r , the
ratio of the limit load capacity to the minimum critical stress for the ®rst s �s1/s

�
m and the second s �s2/s

�
m

non-linear approximations at the imperfections �zg �j 1:0 j, �zl �j 1:0 j and for some possible
combinations of buckling modes. The following code has been used: gÐfor the primary or the
secondary global buckling mode (m=1), lÐfor the local buckling mode (m>1).

In the case of the eccentric compression the global stress values are signi®cantly higher than under the
uniform compression while the limit stress values, s �s2/s

�
m are slightly higher (compare cases 1±6, 8, 9±

13, 15 in Table 5). This means that the imperfection sensitivity increases together with the eccentricity of
the compressive force.

Attention should be paid to the proper selection of local buckling modesÐcompare cases 7 and 14 in
Table 5 (for a more detailed analysis see papers by Kolakowski, 1989a; Teter and Kolakowski, 1996).
This can be accomplished only by means of a non-linear analysis.

These data allow us to conclude that the interaction of the two global buckling modes with local
modes: the minimum primary symmetric and the secondary antisymmetric ones and two local symmetric
ones at (m22) gives the lowest values of the limit stresses s �s2/s

�
m.

Fig. 9. Channel cross-section.

Fig. 10. Dimensionless stress s �r vs the number of half-waves m for uniform compression channel (k=1) presented in Fig. 9.
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Results obtained for intermediate C-sti�eners analogous with those for V-sti�eners.
Owing to a good separation of the global modes from the minimum primary local mode this coupled

buckling analysis should be carried out in terms of the second order non-linear approximation. In
reality, the second order approximation caused a decrease in the range of imperfection sensitivity and
allows a proper evaluation of the load carrying capacity.

5. Conclusions

In the case the global stresses exceed the minimum local stress it is possible to attain the load carrying
capacity higher than the minimum local stress value for su�ciently small imperfections.

Fig. 11. Dimensionless stress s �r vs the number of half-waves m for compressed eccentrically channel (k=0) presented in Fig. 9.

Table 5

Load-carrying capacity s �s /s
�
m for channel presented in Fig. 9 with the imperfections �z1 �j 1:0 j, �zl �j 0:2 j, where the code has

been used: gÐfor the primary or the secondary global buckling mode (m=1), lÐfor the local buckling mode (m>1)

k s �1 s �2 s �3 s �4 s �5 s �6 s �s1/s
�
m s �s2/s

�
m

1 1 2.4319(1) 3.2848(1) 1.2870(6) 0.1716 1.0155

2 1 2.4319(1) 3.2848(1) 1.4525(6) 0.1558 0.9159

3 1 2.4319(1) 1.2870(6) 1.4525(6) 0.2029 1.0422

4 1 3.2848(1) 1.2870(6) 1.4525(6) 0.2236 0.7369

5 1 2.4319(1) 3.2848(1) 1.2870(6) 1.4525(6) 0.2031 0.6164

6 1 2.4319(1) 1.2870(6) 1.4525(6) 1.3679(4) 1.3279(8) 0.2187 0.7325

7 1 3.2848(1) 1.2870(6) 1.4525(6) 1.3679(4) 1.3279(8) 0.2235 0.5574

8 1 2.4319(1) 3.2848(1) 1.2870(6) 1.4521(6) 1.3679(4) 1.3279(8) 0.1263 0.5156

9 0 4.1957(1) 4.5715(1) 2.8337(4) 0.1285 0.9519

10 0 4.1957(1) 2.8337(4) 7.8726(4) 0.1853 0.8474

11 0 4.5715(1) 2.8337(4) 7.8726(4) 0.1980 1.1596

12 0 4.1957(1) 4.5715(1) 2.8337(4) 7.8724(4) 0.1853 0.7359

13 0 4.1957(1) 2.8337(4) 7.8726(4) 4.0453(2) 3.1925(6) 0.1767 0.7338

14 0 4.5715(1) 2.8337(4) 7.8726(4) 4.0453(2) 3.1925(6) 0.1946 1.1514

15 0 4.1957(1) 4.5715(1) 2.8337(4) 7.8724(4) 4.0457(2) 3.1925(6) 0.1019 0.6284
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The applied method describing the buckling of thin-walled structures from global to local instability
can be easily adopted in the computer-aided system, CAD/CAM.

The interactive buckling analysis of thin-walled beam-columns with an intermediate sti�ener or/and
variable thickness under axial compression and a constant bending moment carried out by means of the
transition matrix method has been presented. All global and local modes are described by the plate
theory. Intermediate sti�eners are found to exert a strong in¯uence on the local buckling modes.
Numerical calculations prove that the mixed buckling mode must be taken into account in the coupled
analysis.

Appendix A

The kinematical and statical continuity conditions at the junctions of adjacent plates may be written
in the form:

ui�1 jÿ� ui j� ,

wi�1 jÿ� wi j� cos�j� ÿ vi j� sin�j�,

vi�1 jÿ� wi j� sin�j� � vi j� cos�j�,

wi�1, y jÿ� wi, y j� ,

M�i�1�y jÿ�Miy j� ,

N�i�1�y jÿ ÿNiy j� cos�j� ÿQ�iy j� sin�j� � 0,

Q��i�1�y j� �Niy j� sin�j� ÿQ�iy j� cos�j� � 0,

N��i�1�xy jÿ� N�ixy j� , �12�

where

N�ixy � Nixy �Niyui, y

Q�iy � Niywi, y �Nixywi, x �Miy, y � 2Mixy, x

j � ji;i�1: �13�

The boundary conditions referring to the simply supported beam-columns at their both ends, i.e. x= 0
and x=l are assumed to be:X

i

1

bi

�bi
0

Nix�xi � 0, yi � dyi �
X
i

1

bi

�bi
0

Nix�xi � l, yi � dyi �
X
i

N
�0�
ix ,
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vi�xi � 0, yi � � vi�xi � l, yi � � 0,

wi�xi � 0, yi � � wi�xi � l, yi � � 0,

Miy�xi � 0, yi � �Miy�xi � l, yi � � 0: �14�

Appendix B

The conditions resulting from the variational principle for two longitudinal edges, for which a relation
between the state vectors is derived using the modi®ed transition matrix method, may be written in the
form:�

�Niy�dvi dxi jyi�const� 0;

�
N�ixydui dxi jyi�const�

�
�Nixy �Niyui, y�dui dxi jyi�const� 0;

�
�Miy�dwi, y dxi jyi�const� 0;

�
Q�iydwi dxi jyi�const�

�
�Miy, y � 2Mixy, x �Niywi, y �Nixywi, x�dwi dxi jyi�const� 0: �15�
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